Merton Problem with Taxes: Characterization, Computation, and Approximation
نویسندگان
چکیده
We formulate a computationally tractable extension of the classical Merton optimal consumptioninvestment problem to include the capital gains taxes. This is the continuous-time version of the model introduced by Dammon, Spatt, and Zhang [Rev. Financ. Stud., 14 (2001), pp. 583–616]. In this model the tax basis is computed as the average cost of the stocks in the investor’s portfolio. This average rule introduces only one additional state variable, namely the tax basis. Since the other tax rules such as the first in first out rule require the knowledge of all past transactions, the average model is computationally much easier. We emphasize the linear taxation rule, which allows for tax credits when capital gains losses are experienced. In this context wash sales are optimal, and we prove it rigorously. Our main contributions are a first order explicit approximation of the value function of the problem and a unique characterization by means of the corresponding dynamic programming equation. The latter characterization builds on technical results isolated in the accompanying paper [I. Ben Tahar, H. M. Soner, and N. Touzi, SIAM J. Control Optim., 46 (2007), pp. 1779–1801]. We also suggest a numerical computation technique based on a combination of finite differences and the Howard iteration algorithm. Finally, we provide some numerical results on the welfare consequences of taxes and the quality of the first order approximation.
منابع مشابه
The Dynamic Programming Equation for the Problem of Optimal Investment Under Capital Gains Taxes
This paper considers an extension of the Merton optimal investment problem to the case where the risky asset is subject to transaction costs and capital gains taxes. We derive the dynamic programming equation in the sense of constrained viscosity solutions. We next introduce a family of functions (Vε)ε>0, which converges to our value function uniformly on compact subsets, and which is character...
متن کاملEfficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملGDOP Classification and Approximation by Implementation of Time Delay Neural Network Method for Low-Cost GPS Receivers
Geometric Dilution of Precision (GDOP) is a coefficient for constellations of Global Positioning System (GPS) satellites. These satellites are organized geometrically. Traditionally, GPS GDOP computation is based on the inversion matrix with complicated measurement equations. A new strategy for calculation of GPS GDOP is construction of time series problem; it employs machine learning and artif...
متن کاملModified Physical Optics Approximation for RCS Calculation of Electrically Large Objects with Coated Dielectric
The Radar Cross Section of a target plays an important role in the detection of targets by radars. This paper presents a new method to predict the bistatic and monostatic RCS of coated electrically large objects. The bodies can be covered by lossy electric and/or magnetic Radar Absorbing Materials (RAMs). These materials can be approximated by the Fresnel reflection coefficients. The pro...
متن کاملThe Basic Theorem and its Consequences
Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Financial Math.
دوره 1 شماره
صفحات -
تاریخ انتشار 2010